

1 2 3	Modeling the hydrology and physiology of <i>Sphagnum</i> moss in a northern temperate bog
3 4 5 6	Xiaoying Shi ^{1*} , Daniel M. Ricciuto ¹ , Peter E. Thornton ¹ , Xiaofeng Xu ² , Fengming Yuan ¹ , Richard J. Norby ¹ , Anthony P. Walker ¹ , Jeffrey Warren ¹ , Jiafu Mao ¹ , Paul J. Hanson ¹ , Lin Meng ³ , David Weston ¹ , Natalie A. Griffiths ¹
7 8	¹ Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
9	² Biology Department San Diego State University, San Diego, CA, 92182-4614, USA
10 11 12 13 14	³ Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, 50011
15	* To whom correspondence should be addressed
16	Corresponding author's email: shix@ornl.gov
17	Fax: 865-574-2232
18	
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	
36 37 38 39	

40 41	Abstract
42	Mosses need to be incorporated into Earth system models to better simulate
43	peatland functional dynamics under changing environment. Sphagnum mosses are strong
44	determinants of nutrient, carbon and water cycling in peatland ecosystems. However,
45	most land surface models do not include Sphagnum or other mosses as represented plant
46	functional types (PFTs), thereby limiting predictive assessment of peatland responses to
47	environmental change. In this study, we introduce a moss PFT into the land model
48	component (ELM) of the Energy Exascale Earth System Model (E3SM), by developing
49	water content dynamics and non-vascular photosynthetic processes for moss. The model
50	was parameterized and independently evaluated against observations from an
51	ombrotrophic forested bog as part of the Spruce and Peatland Responses Under Changing
52	Environments (SPRUCE) project. Inclusion of a Sphagnum PFT with some Sphagnum
53	specific processes in ELM allows it to capture the observed seasonal dynamics of
54	Sphagnum gross primary production (GPP), albeit with an underestimate of peak GPP.
55	The model simulated a reasonable annual net primary production (NPP) for moss but
56	with less interannual variation than observed, and reproduced above ground biomass for
57	tree PFTs and stem biomass for shrubs. Different species showed highly variable
58	warming responses under both ambient and elevated atmospheric CO ₂ concentrations,
59	and elevated CO ₂ altered the warming response direction for the peatland ecosystem.
60	Microtopography is critical: Sphagnum mosses on hummocks and hollows were
61	simulated to show opposite warming responses (NPP decreasing with warming on
62	hummocks, but increasing in hollows), and hummock Sphagnum was modeled to have
63	strong dependence on water table height. Inclusion of this new moss PFT in global ELM

- 64 simulations may provide a useful foundation for the investigation of northern peatland
- 65 carbon exchange, enhancing the predictive capacity of carbon dynamics across the
- 66 regional and global scales.

67 **Copyright statement**

68	This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-
69	AC05-00OR22725 with the U.S. Department of Energy. The United States Government
70	retains and the publisher, by accepting the article for publication, acknowledges that the
71	United States Government retains a non-exclusive, paid-up, irrevocable, world-wide
72	license to publish or reproduce the published form of this manuscript, or allow others to
73	do so, for United States Government purposes. The Department of Energy will provide
74	public access to these results of federally sponsored research in accordance with the DOE
75	Public Access Plan (<u>http://energy.gov/downloads/doe-public-access-plan</u>).
76 77 78	1. Introduction
79	Boreal peatlands store at least 500 Pg of soil carbon due to incomplete
80	decomposition of plant litter inputs resulting from a combination of low temperature and
81	water-saturated soils. Because of this capacity to store carbon, boreal peatlands have
82	played a critical role in regulating the global climate since the onset of the Holocene
83	(Frolking and Roulet, 2007; Yu et al., 2010). The total carbon stock is large but
84	uncertain: a new estimation of northern peatlands carbon stock of 1055 Pg was recently
85	reported by Nichols and Peteet (2019). The rapidly changing climate at high latitudes is
86	likely to impact both primary production and decomposition rates in peatlands,
87	contributing to uncertainty in whether peatlands will continue their function as net carbon

88	sinks in the long term (Moore et al., 1998; Turetsky et al., 2002; Wu and Roulet, 2014).
89	Manipulative experiments and process-based models are thus needed to make defensible
90	projections of net carbon balance of northern peatlands under anticipated global warming
91	(Hanson et al, 2017; Shi et al., 2015).
92	Peatlands are characterized by a ground layer of bryophytes, and the raised or
93	ombrotrophic bogs of the boreal zone are generally dominated by Sphagnum mosses that
94	contribute significantly to total ecosystem CO ₂ flux (Oechel and Van Cleve, 1986;
95	Williams and Flanagan, 1998; Robroek et al., 2009; Vitt, 2014). Sphagnum mosses also
96	strongly affect the hydrological and hydrochemical conditions at the raised bog surface
97	(Van, 1995; Van der Schaaf, 2002). As a result, microclimate and Sphagnum species
98	interactions influence the variability of both carbon accumulation rates and water
99	exchanges between and within peatlands (Heijmans et al., 2004a, 2004b; Rosenzweig et
100	al., 2008; Brown et al., 2010; Petrone et al., 2011; Goetz and Price, 2015). Functioning as
101	keystone species of boreal peatlands, Sphagnum mosses strongly influence the nutrient,
102	carbon and water cycles of peatland ecosystems (Nilsson and Wardle, 2005; Cornelissen
103	et al., 2007; Lindo and Gonzalez, 2010; Turetsky et al., 2010; Turetsky et al., 2012), and
104	exert a substantial impact on ecosystem net carbon balance (Clymo and Hayward; 1982;
105	Gorham, 1991; Wieder, 2006; Weston et el., 2015; Walker et al., 2017; Griffiths et al.,
106	2018).

107 Numerical models are useful tools to identify knowledge gaps, examine long-term
108 dynamics, and predict future changes. Earth system models (ESMs) simulate global
109 processes, including the carbon cycle, and are primarily used to make future climate
110 projections. Poor model representation of carbon processes in peatlands is identified as a

111	deficiency causing biases in simulated soil organic mass and heterotrophic respiratory
112	fluxes for current ESMs (Todd-Brown et al., 2013; Tian et al., 2015). Although most
113	ESMs do not include moss, a number of offline dynamic vegetation models and
114	ecosystem models do include one or more moss plant functional types (PFTs) (Pastor et
115	al., 2002; Nungesser, 2003; Zhuang et al., 2006; Bond-Lamberty et al., 2007; Heijmans et
116	al., 2008; Euskirchen et al., 2009; Wania et al., 2009; Frolking et al., 2010). Several
117	peatland-specific models contain moss species and have been applied globally or at
118	selected peatland sites. For example, the McGill Wetland Model (MWM) was evaluated
119	using the measurements at Degerö Stormyr and the Mer Bleue bogs (St-Hilaire et al.,
120	2010). The peatland version of the General Ecosystem Simulator - Model of Raw Humus,
121	Moder and Mull (GUESS-ROMUL) was used to simulate the changes of daily CO ₂
122	exchange rates with water table position at a fen (Yurova et al., 2007). The PEATBOG
123	model was implemented to characterize peatland carbon and nitrogen cycles in the Mer
124	Bleue bog, including moss PFTs but without accounting for microtopography (Wu et al.,
125	2013a). The CLASS-CTEM model (the coupled Canadian Land Surface Scheme and the
126	Canadian Terrestrial Ecosystem Model), which includes a moss layer as the first soil
127	layer, was applied to simulate water, energy and carbon fluxes at eight different peatland
128	sites (Wu et al., 2016). The IAP-RAS (Institute of Applied Physics – Russian Academy
129	of Sciences) wetland methane (CH ₄) model with a 10 cm thick moss layer (Mokhov et al.
130	2007) was run globally to simulate the distribution of CH4 fluxes (Wania et al., 2013).
131	The CHANGE model (a coupled hydrological and biogeochemical process simulator),
132	which includes a moss cover layer (Launiainen et al., 2015), was used to investigate the
133	effect of moss on soil temperature and carbon flux at a tundra site in Northeastern Siberia

134	(Park et al., 2018). Two models, the "ecosys" model (Grant et al., 2012) and	
135	CLM_SPRUCE (Shi et al., 2015), have been parameterized to represent peatland	
136	microtopographic variability (e.g., the hummock and hollow microterrain characteristic	
137	of raised bogs) with lateral connections across the topography. Prediction of water table	
138	dynamics in the "ecosys" model is constrained by specifying a regional water table at a	
139	fixed height and a fixed distance from the site of interest, thereby missing key controlling	
140	factors of a precipitation-driven dynamic water table (Shi et al., 2015). The	
141	CLM_SPRUCE model (Shi et al., 2015) was developed to parameterize the hydrological	
142	dynamics of lateral transport for microtopography of hummocks and hollows in the raised	
143	bog environment of the SPRUCE (Spruce and Peatland Responses Under Changing	
144	Environments) experiment (Hanson et al., 2017). That model version did not include the	
145	biophysical dynamics of Sphagnum moss, and used a prescribed leaf area instead of	
146	allowing leaf area to evolve prognostically. In this study, we introduce a new Sphagnum	
147	moss PFT into the model, and migrate the entire raised-bog capability into the new	
148	Energy Exascale Earth System Model (E3SM), specifically into version 1 of the E3SM	
149	land model (ELM v1, Ricciuto et al., 2018). The objectives of this study are to: 1)	
150	introduce a Sphagnum PFT to the ELM model with additional Sphagnum-specific	
151	processes; and 2) apply the updated ELM to explore how an ombrotrophic, raised-dome	
152	bog peatland ecosystem will respond to different scenarios of warming and elevated	
153	atmospheric CO ₂ concentration.	

154 **2. Model description**

155 **2.1 Model provenance**

156	ELM v1 is the land component of E3SM v1, which is supported by the US
157	Department of Energy (DOE). Developed by multiple DOE laboratories, E3SM consists
158	of atmosphere, land, ocean, sea ice, and land ice components, linked through a coupler
159	that facilitates across-component communication (Golaz et al., 2019). ELM was
160	originally branched from the Community Land Model (CLM4.5, Oleson et al., 2013),
161	with new developments that include representation of coupled carbon, nitrogen, and
162	phosphorus controls on soil and vegetation processes, and new plant carbon and nutrient
163	storage pools (Ricciuto et al., 2018; Yang et al., 2019; Burrows et al., in review). The
164	model version used in this study is designated ELM_SPRUCE, and includes the new
165	implementation of Sphagnum mosses as well as the hydrological dynamics of lateral
166	transport between hummock and hollow microtopographies. The implementation has
167	been parameterized based on observations from the S1-Bog in northern Minnesota, USA,
168	as described by Shi et al. (2015), with additional details provided below.
169	
170	2.2 New model developments
171	2.2.1 Water content dynamics of <i>Sphagnum</i> mosses
172	The main sources for water content of Sphagnum mosses are passive capillary
173	water uptake from peat, and interception of atmospheric water on the capitulum (growing
174	tip of the moss) (Robroek et al. 2007). Capillary water uptake, the internal Sphagnum
175	moss water content, is modeled as functions of soil water content and evaporation losses.

176 Water intercepted on the *Sphagnum* moss capitulum is modeled as a function of moss

177 foliar biomass, current canopy water, water drip, and evaporation losses.

178	Since evaporation at the Sphagnum surface depends on capillary wicking of water		
179	up to the surface and atmospheric water vapor deficit, we developed a relationship		
180	between measured soil water content at depth, and surface Sphagnum water content. At		
181	SPRUCE, the peat volumetric water content is measured at several depths using		
182	automated sensors (model 10HS, Decagon Devices, Inc., Pullman, WA) calibrated for the		
183	site-specific upper peat soil (reference Figure S1, Hanson et al. 2017). We periodically		
184	sampled the surface Sphagnum for gravimetric water content and water potential using a		
185	dew point potentiometer (WP4, Decagon Devices, Inc.). The automated measurements of		
186	peat water content at 10 cm depth were shown to be a good indicator of surface		
187	Sphagnum water content (Fig. 1). Based on this relationship, we model the water content		
188	of Sphagnum moss due to capillary rise $(W_{internal})$ (g water /g dry moss) as:		
189	$W_{internal} = 0.3933 + 7.6227/(1 + \exp(-(Soil_{vol} - 0.1571)))/0.018 $ (1)		
190	where Soil _{vol} is the averaged volumetric soil water of modeled soil layers nearest the		
191	10cm depth horizon (layers 3 and 4 in the ELM v1 vertical layering scheme).		
192	The Sphagnum moss surface water ($W_{surface}$) was calculated using the model		
193	predicted canopy water and the dry foliar biomass as:		
194	$W_{surface} = can_water/fmass$ (2)		
195	where $W_{surface}$ (g water /g dry moss) is the surface water content and <i>fmass</i> is the foliar		

biomass of *Sphagnum* mosses. The canopy_water is the *Sphagnum* moss canopy waterand it is simulated by a function of interception, canopy drip and canopy evaporation

198 (Oleson et al., 2013).

208 ELM_SPRUCE computes photosynthetic carbon uptake (gross primary

209 production, or GPP) for each vascular PFT on a half-hourly time step, based on the

210 Farquhar biochemical approach (Farquhar et al., 1980; Collatz et al., 1991, 1992), with

- 211 implementation as described by Oleson et al. (2013). The internal water content of
- 212 Sphagnum mosses is observed to affect photosynthesis by constraining the length of the
- 213 diffusive path for CO₂ through the variably-hydrated external hyaline cells to the carbon
- fixation sites (Robroek et al., 2009; Rydin and Jeglum, 2006). Goetz and Price (2015)

- also indicated that capillary rise through the peat is essential to maintain a water content
- 216 sufficient for photosynthesis for Sphagnum moss species, but that atmospheric inputs can
- 217 provide small but critical amounts of water for physiological processes. Sphagnum lacks
- 218 a leaf cuticle and stomata that regulate water loss and CO₂ uptake in vascular plants
- 219 (Titus et al. 1983). The primary transport pathway for CO₂ is through the cells and is
- analogous to mesophyll conductance in higher plants.
- The stomatal conductance for vascular plant types in ELM_SPRUCE is derived from the Ball-Berry conductance model (Collatz et al., 1991). That model relates stomatal conductance to net leaf photosynthesis, scaled by the relative humidity and the CO₂ concentration at the leaf surface. The stomatal conductance (g_s) and boundary layer conductance (g_b) are required to obtain the internal leaf CO₂ partial pressure (C_i) of
- 226 vascular PFTs:

227
$$C_i = C_a - (\frac{1.4g_s + 1.6g_b}{g_s g_b}) P_{atm} A_n$$
 (4)

where C_i is the internal leaf CO₂ partial pressure, C_a is the atmospheric CO₂ partial pressure, A_n is leaf net photosynthesis (μ mol CO₂ m⁻² s⁻¹) P_{atm} is the atmospheric pressure, g_s is the leaf stomatal conductance, g_b is the leaf boundary layer conductance, and values 1.4 and 1.6 are the ratios of the diffusivity of CO₂ to H₂O for stomatal conductance and the leaf boundary layer conductance, respectively. For Sphagnum moss photosynthesis, we followed the method from the McGill

- 234 Wetland Model (St-Hilaire et al. 2010; Wu et al., 2013), which is based on the effects of
- 235 Sphagnum moss water content on photosynthetic capacity (Tenhunen et al., 1976) and

255

- 236 total conductance of CO₂ (Williams and Flanagan, 1998), and replaces the stomatal
- 237 conductance representation used for vascular PFTs.

$$238 C_i = C_a - \frac{P_{atm}A_n}{g_{tc}} (5)$$

- 239 The total conductance to $CO_2(g_{tc})$ was determined from a least-squares regression
- 240 described by Williams and Flanagan (1998) as:

241
$$g_{tc} = -0.195 + 0.134W_{total} - 0.0256W_{total}^{2} + 0.0028W_{total}^{3} -$$

242 $0.0000984W_{total}^{4} + 0.00000168W_{total}^{5}$ (6)

243 where W_{total} is as defined in equation (3). This relationship is only valid up to the

244 maximum water holding capacity of mosses.

245 In addition to the water content, the effects of moss submergence were taken into 246 account in the calculation of moss photosynthesis. Walker et al. (2017) reported 247 significant impacts of submergence on measured Sphagnum GPP and modeled the effect 248 by modifying the Sphagnum leaf (stem) area index. For simplicity, in ELM SPRUCE, 249 we calculated such impacts on Sphagnum GPP directly as a function of the height of 250 simulated surface water, assuming that GPP from the submerged portion of 251 photosynthetic tissue is negligible. GPP is thus reduced linearly according to the 252 following equation: 253 $GPP_{sub} = GPP_{orig} * (h_{moss} - H_2O_{sfc})$ (7)

254 where GPP_{sub} is the GPP corrected for submergence effects, GPP_{orig} is the original GPP, H₂O_{sfc} is the surface water height, and h_{moss} is the height of the photosynthesizing

- 256 Sphagnum layer above the soil surface, set to 5cm in our simulations. If H₂O_{sfc} is equal to
- 257 or greater than h_{moss}, GPP is reduced to zero. Because in our simulations surface water is
- 258 never predicted to occur in the hummocks, in practice this submergence effect only
- affects the moss GPP in the hollows.
- 260 **3. Methods**

261 3.1 Site Description

We focused on a high C, ombrotrophic peatland (the S1-Bog) that has a perched water table with limited groundwater influence (Sebestyen et al. 2011, Griffiths and

264 Sebestyen, 2016). This southern boreal bog is located on the Marcell Experimental

265 Forest, approximately 40 km north of Grand Rapids, Minnesota, USA (47.50283 degrees

latitude, -93.48283 degrees longitude) (Sebestyen et al. 2011), and is the site of the

267 SPRUCE climate change experiment (<u>http://mnspruce.ornl.gov</u>; Hanson et al., 2017). The

268 S1-Bog has a raised hummock and sunken hollow microtopography, and it is nearly

269 covered by Sphagnum mosses. S. angustifolium (C.E.O. Jensen ex Russow) and S. fallax

270 (Klinggr.) occupy 68% of the moss layer and exist in both hummocks and hollows. S.

271 magellenicum (Brid.) occupies ~20% of the moss layer and is primarily limited to the

272 hummocks (Norby et al., 2019). The vascular plant community at the S1-Bog is

273 dominated by the evergreen tree *Picea mariana* (Mill.) B.S.P, the deciduous tree *Larix*

274 laricina (Du Roi) K. Koch, and a variety of ericaceous shrubs. Trees are present due to

- 275 natural regeneration following strip cut harvesting in 1969 and 1974 (Sebestyen et al.,
- 276 2011). The soil of this peat bog is the Greenwood series, a Typic Haplohemist

277 (https://websoilsurvey.sc.egov.usda.gov), and its average peat depth is 2 to 3 m

278 (Parsekian et al., 2012)

279	Northern Minnesota has a subhumid continental climate with average annual
280	precipitation of 768 mm and annual air temperature of 3.3 °C for the time period from
281	1965 to 2005. Mean annual air temperatures at the bog have increased about 0.4 $^{\circ}$ C per
282	decade over the last 40 years (Verry et al., 2011).
283	3.2 Field measurements
284	Multiple observational pre-treatment data were used in this study. Flux-
285	partitioned GPP of Sphagnum mosses was derived from measured hourly Sphagnum-peat
286	net ecosystem exchange (NEE) flux (Walker et al., 2017). The GPP – NEE relationship
287	was also evaluated using observed vegetation growth and productivity allometric and
288	biomass data on tree species, stem biomass for shrub species (Hanson et al., 2018a and
289	b), and Sphagnum pre-treatment net primary productivity (NPP) (Norby et al., 2019).
290	ELM_SPRUCE was driven by climate data (temperature, precipitation, relative humidity,
291	solar radiation, wind speed, pressure and long wave radiation) from 2011 to 2017
292	measured at the SPRUCE S1-Bog (Hanson et al., 2015a and b). The surface weather
293	station is outside of the enclosures and not impacted by the experimental warming
294	treatments that began in 2015. These data are available at https://mnspruce.ornl.gov/.
295 296	3.3 Simulation of the SPRUCE experiment
297	Based on measurements at the SPRUCE site, ELM SPRUCE includes four

- PFTs: boreal evergreen needleleaf tree (Picea), boreal deciduous needleleaf tree (Larix), 298
- 299 boreal deciduous shrub (representing several shrub species), and the newly introduced
- 300 Sphagnum moss PFT. We used measurements from Sphagnum moss collected at a
- 301 tussock tundra site in Alaska (Hobbie 1996) to set several of the model leaf litter

302	parameters for our simulations (Table 1). The values for other parameters have been
303	optimized based on observations at the SPRUCE site (Table 2 and 3, optimization
304	methods described in section 3.4). We prescribe both hummock and hollow
305	microtopographies to have the same fractional PFT distribution. Consistent with Shi et
306	al. (2015), hummocks and hollows were modeled on separate columns with lateral flow
307	of water between them. All the ELM_SPRUCE simulations were conducted using a
308	prognostic scheme for canopy phenology (Olesen et al., 2013).
309	The SPRUCE experiment at the S1-Bog consists of combined manipulations of
310	temperature (various differentials up to +9 °C above ambient) and atmospheric CO_2
311	concentration (ambient and ambient + 500 ppm) applied in 12 m diameter x 8 m tall
312	enclosures constructed in the S1-Bog. The whole-ecosystem warming began in August
313	2015, elevated CO ₂ started from June 2016, and various treatments are envisioned to
314	continue until 2025. Extensive pre-treatment observations at the site began in 2009.
315	For the ELM_SPRUCE, we continuously cycled the 2011-2017 climate forcing
316	(see section 3.2) to equilibrate carbon and nitrogen pools under pre-industrial
317	atmospheric CO2 concentrations and nitrogen deposition, and then launched a simulation
318	starting from year 1850 through year 2017. This transient simulation includes historically
319	varying CO ₂ concentrations, nitrogen deposition, and the land-use effects of a strip cut
320	and harvest at the site in 1974. These simulations were used to compare model
321	performance with pre-treatment observations. A subset of these observations was also
322	used for optimization and calibration (section 3.4).
323	To investigate how the bog vegetation may respond to different warming
324	scenarios and elevated atmospheric CO2 concentrations, we performed 11 model runs

325	from the same starting point in year 2015. These simulations were designed to reflect the
326	warming treatments and CO ₂ concentrations being implemented in the SPRUCE

- 327 experiment enclosures. The model simulations include one ambient case (both ambient
- 328 temperature and CO₂ concentration), and five simulations with modified input air
- 329 temperatures to represent the whole-ecosystem warming treatments at five levels (+0 °C,
- +2.25 °C, +4.50 °C, +6.75 °C and +9.00 °C above ambient) and at ambient CO₂, and 330
- 331 another five simulations with the same increasing temperature levels and at elevated CO₂
- 332 (900 ppm). In the treatment simulations, we also considered the passive enclosure
- 333 effects, which reduce incoming shortwave and increase incoming longwave radiation
- 334 (Hanson et al., 2017). Following the SPRUCE experimental design, there was no water
- 335 vapor added so that the simulations used constant specific humidity instead of constant
- 336 relative humidity across the warming levels. All the treatment simulations were
- 337 performed through the year 2025 by continuing to cycle the 2011-2017 meteorological
- 338 inputs (with modified temperature and radiation to reflect the treatments) to simulate
- 339 future years.

Parameters	Description	Values
lflitcn	Leaf litter C:N ratio (gC/gN)	66
lf_fcel	Leaf litter fraction of cellulose	0.737
lf_flab	Leaf litter fraction of labile	0.227
lf_flig	Leaf litter fraction of lignin	0.036

340 Table 1: Physiological parameters of Sphagnum mosses as given in Hobbie 1996

342 **3.4. Model sensitivity analysis and calibration**

343	The vegetation physiology parameters in ELM_SPRUCE were originally derived
344	from CLM4.5 and its predecessor, Biome-BGC, and represent broad aggregations of
345	plant traits over many species and varied environmental conditions (White et al., 2000).
346	To achieve reasonable model performance at SPRUCE, site-specific parameters and
347	targeted parameter calibration are needed. Since the ELM_SPRUCE contains over 100
348	uncertain parameters, parameter optimization is not computationally feasible without first
349	performing some dimensionality reduction. Based on previous ELM sensitivity analyses
350	(e.g., Lu et al., 2018; Ricciuto et al., 2018; Griffiths et al., 2018), we chose 35 model
351	parameters for further calibration (Tables 2 and 3). An ensemble of 3000 ELM_SPRUCE
352	simulations were conducted using the procedure described in 3.3, with each ensemble
353	member using a randomly selected set of parameter values within uniform prior ranges.
354	This model ensemble was first used to construct a polynomial chaos surrogate model,
355	which was then used to perform a global sensitivity analysis (Sargsyan et al., 2014;
356	Ricciuto et al., 2018). Main sensitivity indices, reflecting the proportion of output
357	variance that occurs for each parameter, are described in section 4.1.
358	To minimize potential biases in model predictions of treatment responses, we
359	calibrated the same 35 model parameters using pre-treatment observations as data
360	constraints. We employed a quantum particle swarm optimization (QPSO) algorithm (Lu
361	et al., 2018). While this method does not allow for the calculation of posterior prediction
362	uncertainties, it is much more computationally efficient than other methods such as
363	Markov Chain Monte Carlo. The constraining data included tree growth and biomass
364	(Hanson et al. 2018a), shrub growth and biomass (Hanson et al., 2018b), Sphagnum net

- 365 primary productivity (Norby et al., 2017, 2019), enclosure-averaged leaf area index by
- 366 PFT, and water table depth (WTD) observations, aggregated to seasonal averages
- 367 (Hanson et al., 2015b). The goal of the optimization is to minimize a cost function, which
- 368 we define here as a sum of squared errors over all observation types weighted by
- 369 observation uncertainties. When observation uncertainties were not available, we
- 370 assumed a range of $\pm 25\%$ from the default value. Site measurements were also used to
- 371 constrain the ranges of two parameters: *leafcn* (leaf carbon to nitrogen ratio) and *slatop*
- 372 (specific leaf area at canopy top). The uniform prior ranges for these parameters represent
- 373 the range of plot to plot variability. Optimized parameter values are shown in Table 2 and
- 374 3. Section 4 reports the results of simulations using these optimized parameters, which
- 375 were used to perform a spinup, transient (1850-2017) and set of 11 treatment simulations
- 376 (2015-2025) as described above.

Parameter	Description	Sphagnum	Picea	Larix	Shrub	Range
flnr	Rubisco-N fraction of leaf N	0.2906	0.0678	0.2349	0.2123	[0.05,0.30]
croot_stem	Coarse root to stem allocation ratio	N/A	0.2540	0.1529	0.7540	[0.05,0.8]
stem_leaf ¹	Stem to leaf allocation ratio	N/A	1.047	1.016	0.754	[0.3,2.2]
leaf_long	Leaf longevity (yr)	0.9744	5 ³	N/A	N/A	[0.75, 2.0]
slatop	Specific leaf area at canopy top (m ² gC ⁻¹)	0.00781	0.00462	0.0128	0.0126	[0.004,0.04]
leafcn	Leaf C to N ratio	35.56	70.17	64.84	33.14	[20,75]
froot_leaf ²	Fine root to leaf allocation ratio	0.3944	0.8567	0.3211	0.6862	[0.15, 2.0]
mp	Ball-Berry stomatal conductance slope	N/A	7.50	9.32	10.8	[4.5, 12]

377 Table 2: PFT-specific optimized model parameters

378 Optimized values of PFT-specific parameters. The range column values in brackets indicate the range of

379 acceptable parameter values used in the sensitivity analysis and the optimization across all four PFTs in the 380

format [minimum, maximum]. N/A indicates that parameter is not relevant for that PFT.

- 381 ¹for tree PFTs, this parameter depends on NPP. The value shown is the allocation at an NPP of 800 gC m⁻²
- 382 yr⁻¹.
- 383 ² the fine root pool is used as a surrogate for non-photosynthetic tissue in *Sphagnum*
- 384 ³ This parameter was not optimized; we used the default value.
- 385
- 386
- 387
- 388

	Description	Optimized value	Default	Range
r_mort	Vegetation mortality	0.0497	0.02	[0.005, 0.1]
decomp_depth_efolding	Depth-dependence e- folding depth for decomposition (m)	0.3899	0.5	[0.2, 0.7]
Qdrai,0	Maximum subsurface drainage rate (kg m ⁻² s ⁻¹)	3.896e-6	9.2e-6*	[0, 1e-3]
Q ₁₀ _mr	Temperature sensitivity of maintenance respiration	2.212	1.5	[1.2, 3.0]
br_mr	Base rate for maintenance respiration (gC gN m ² s ⁻¹)	4.110e-6	2.52e-6	[1e-6, 5e-6]
crit_onset_gdd	Critical growing degree days for leaf onset	99.43	200	[20, 500]
lw_top_ann	Live wood turnover proportion (yr ⁻¹)	0.3517	0.7	[0.2, 0.85]
gr_perc	Growth respiration fraction	0.1652	0.3	[0.12, 0.4]
rdrai,0	Coefficient for surface water runoff (kg m ⁻⁴ s ⁻¹)	6.978e-7	8.4e-8*	[1e-9, 1e-6]

389 Table 3: Non PFT-specific optimized model parameters

390 Optimized and default values for non PFT-specific parameters. The range column values in brackets

indicate the range of acceptable parameter values used in the sensitivity analysis and the

392 optimization in the format [minimum, maximum].

• Previously calibrated value from Shi et al (2015)

394

395 4. Results

396 4.1 Model sensitivity analysis

397	Main effect (first-order) sensitivities are shown for eight model output quantities of
398	interest: Total site gross primary productivity (GPP), GPP for the moss PFT only
399	(GPP_moss), total site net primary productivity (NPP), NPP for the moss PFT only
400	(NPP_moss), total site vegetation transpiration (QVEGT), evaporation from the moss
401	surface (QVEG_moss), net ecosystem exchange (NEE) and site total vegetation carbon
402	(TOTVEGC) (Fig. 2). Out of 35 parameters investigated, 25 show a sensitivity index of
403	at least 0.01 for one of the quantities of interest, and these are plotted on figure 2. In that
404	figure, sensitivities are stacked in order from highest to lowest for each variable, with the
405	height of the bar equal to the sensitivity index. The first order sensitivities sum to at least
406	0.95 for all variables, indicating that higher order sensitivities (i.e., contributions to the
407	sensitivity from combinations of two or more parameters) contribute relatively little to
408	the variance for these quantities of interest.
409	According to this analysis, the variance in total site GPP is dominated by three
410	Picea parameters: the fraction of leaf nitrogen in RuBiCO (flnr_picea), leaf carbon to
411	nitrogen ratio (<i>leafcn_picea</i>) and the specific leaf area at canopy top (<i>slatop_picea</i>). GPP
412	sensitivity for the moss PFT is dominated by the same three parameters, but for the moss
413	PFT instead of Picea (flnr_moss, leafcn_moss, and slatop_moss). For NPP, QVEGT and
414	NEE, the highest sensitivity the maintenance respiration base rate <i>br_mr</i> , similar to
415	earlier results in Griffiths et al. (2017). The maintenance respiration temperature
416	sensitivity $Q_{I0}mr$ is also a key parameter for NPP and NEE. The critical onset growing
417	degree day threshold (crit_onset_gdd), which drives deciduous phenology in the spring
418	for the Larix and shrub PFTs, is an important parameter for NPP and NEE. flnr_picea is
419	important for both NPP and QVEGT. For NPP_moss and QVEG_moss, leafcn_moss is

- 420 and the ratio of non-photosynthesizing tissue to photosynthesizing tissue (*npt_moss*) are
- 421 sensitive. For TOTVEGC and NEE, vegetation mortality (*r_mort*) is also a sensitive
- 422 parameter. For the site-level quantities of interest, at least 10 parameters contribute
- 423 significantly to the uncertainty, illustrating the complexity of the model and large number
- 424 of processes contributing to uncertainty in SPRUCE predictions. For the moss variables,
- 425 there are some cases where significant sensitivities exist for non-moss PFT parameters.
- 426 For example, *leafcn_shrub* is the seventh most sensitive parameter for GPP_moss,
- 427 indicating that competition between the PFTs for resources may be important. In this
- 428 case, uncertainty about parameters on one PFT may drive uncertainties in the simulated
- 429 productivity of other PFTs.

430

431 Figure 2 Sensitivity analysis of ELM-SPRUCE for selected parameters (Table 2 and 3). The 432 Colored bars indicate the fraction of variance in site gross primary productivity (GPP), moss-only 433 NPP (GPP MOSS), site net primary productivity (NPP), moss-only NPP (NPP MOSS), total 434 vegetation transpiration (QVEGT), moss evaporation (QVEG MOSS), site net ecosystem 435 exchange (NEE) and total vegetation carbon (TOTVEGC) controlled by each parameter. The 436 legend shows the top 25 most influential parameters; the remaining parameters not shown have 437 sensitivities of no more than 0.01 for any of the outputs. All variables represent 2011-2017 438 average values over the ambient conditions. For parameters that are treated as PFT-dependent, 439 the PFT is indicated with a suffix (picea, larix, shrub or moss) 440

441 **4.2 Model evaluation**

- 442 Our model simulates GPP for vascular plants and *Sphagnum* moss in both
- 443 hummock and hollow settings, with separate calculations for each PFT. Here we use the

model estimate of GPP prior to downregulation by nutrient limitation from the ambient
case, based on recent studies indicating that nutrient limitation effects are occurring
downstream of GPP (Raczka et al. 2016; Metcalfe et al., 2017; Duarte et al. 2017). This
treatment of nutrient limitation on GPP has been modified in a more recent version of
ELM, and our moss modifications will be merged to that version as a next step. For now,
by referring to the pre-downregulation GPP we are capturing the most significant impact
of those changes for the purpose of comparison to observations.

451 Our model simulated two seasonal maxima of *Sphagnum* moss GPP, one at the 452 end of May, and the other in August (Figure 3). Both peaks are lower than the maximum 453 of observed (flux-partitioned) GPP, which occurs in August. Based on results of the 454 sensitivity analysis, it could be that the base rate for maintenance respiration for moss is 455 too high, causing an underestimate of NPP and biomass, which leads to a low bias in 456 peak GPP.

457 During June and October, observations suggest that ELM SPRUCE over-predicts 458 GPP. The model does limit GPP as a function of the depth of standing water on the bog 459 surface (Eq. 7). The water table height (WTH) above the bog surface is being predicted 460 by the model (dashed red line in Fig. 3), and while the seasonal pattern of higher water 461 table in the spring and lower water table in the fall agrees well with observations (dashed 462 black line in Fig. 3), the predicted WTH is generally too low by 5-10 cm. The modeled 463 WTH here is for hollow. We turned off the lateral transport when there is ice on the soil 464 layers above the water table to avoid an unreasonable amount of ice accumulation on the 465 frozen layers, which results in there is no flow from hummock to hollow. Forcing the 466 modeled GPP to respond to observed WTH (during the period with observations) gives a

- 467 pattern of increasing GPP through June and July which is more consistent with
- 468 observations (blue line in Fig. 3). We do not have observations for GPP earlier than June,
- 469 due to limitations of the instrumentation when the bog surface is flooded.

- 474
- 475 476 477
- 478 The model simulated reasonable annual values for Sphagnum NPP for the period
- 479 2014-2017 but showed much lower NPP compared with observation (139 vs. 288 g

height (the dashed gray line is the hollow surface).

- 480 $C/m^2/yr$) for the year 2012 (Fig. 4a). Measurement uncertainties are larger in 2016-2017
- 481 than in earlier years, perhaps related to a new measurement protocol for those years, and
- 482 the model estimates are within measurement uncertainty bounds for years 2014-2017
- 483 (Griffiths et al., 2018; Norby et al., 2019). The observed Sphagnum NPP was measured at
- 484 different plots and each plot included different species abundances. As a result, the scaled

- 485 NPP includes spatial variations and uncertainty in species distribution (Norby and Childs,
- 486 2017).

487	Simulated tree above ground biomass is within the observed inter-plot variability
488	(Fig. 4b). Observations suggest an increasing trend in tree biomass, which was not
489	predicted by the model. The optimized parameters show increased mortality and
490	autotrophic respiration rate parameters compared to the default model (Table 3), which
491	causes the simulations to approach steady state relatively quickly after the 1974
492	disturbance. However, the sensitivity analysis also identifies theses mortality and
493	maintenance respiration parameters as highly sensitive, therefore this simulated response
494	is uncertain. For the shrub stem carbon, the simulated mean from year 2012 to 2015 was
495	140.4 g C/m ² , slightly higher than the observation (133.9 g C/m ²) but well within the
496	observed range of inter-plot variability (Fig. 4c).

497

498 Figure 4. Predicted (red bars) *Sphagnum* NPP (left), aboveground tree biomass (middle) and 499 shrub stem carbon (right) compared with the observations (black bars). Observed NPP data are 500 based on growth of 12-17 bundles of 10 Sphagnum stems in 2012-2015 (unpublished data) and 501 in two ambient plots by the method described by Norby et al. (2019) in 2016-1017 (data in 502 Norby et al. 2017).

503

504 4.3 Simulated carbon cycle response to warming and elevated atmospheric CO₂

505 concentration

506	Different PFTs demonstrated different warming responses for both ambient CO ₂
507	and elevated CO ₂ concentration conditions (Fig. 5). Both <i>Larix</i> and shrub NPP increased
508	with warming under both CO ₂ concentration conditions (Fig. 5 b, c, h and i). In addition,
509	CO ₂ fertilization stimulates the growth of these two PFTs and the fertilization effect
510	further increases with warming (Fig. S1, GPP increases more under elevated CO_2
511	condition than the ambient case). In contrast, Picea NPP decreased with warming levels
512	(Fig. 5 a and g) for both CO ₂ conditions. For Sphagnum, NPP decreased in hummocks
513	but increased in hollows with increasing temperature (Fig. 5 d, e, j and k). The enclosure-
514	total NPP for all PFTs responded differently to the warming only and warming with
515	elevated CO ₂ (Fig. 5 f and l). The enclosure-total NPP for each warming level changed
516	less under the ambient CO_2 condition than those with elevated CO_2 condition, and NPP
517	decreased with warming in most of years under ambient CO2 condition but increased
518	under elevated CO ₂ condition (Fig.5 f and l). This result demonstrated that the elevated
519	CO2 scenario changes the sign of the NPP warming response for the bog peatland
520	ecosystem.

⁵²⁵ from 0°C to 9°C

⁵²⁶

527	Compared with the ambient biomass, the biomass of black spruce (<i>Picea</i>)
528	significantly decreased but the biomass of Larix significantly increased under the greatest
529	warming treatment (+9.00°C, Fig.6). Biomass of shrub and hollow Sphagnum also
530	increased, but less than did Larix. The hummock Sphagnum biomass also showed strong
531	correlation with water table height at roughly a 3-month lag (the maximum correlation
532	occurs with an 82-day lag, $R^2=0.56$). Due to the relative lower height of the water table in
533	the hummock than the hollow, the simulated hummock Sphagnum were more
534	significantly water-stressed than the hollow Sphagnum as the water table height declines.
535	This is consistent with multiple studies finding an increase in temperatures associated
536	with drought (low water table height) reducing Sphagnum growth (Bragazza et al., 2016;
537	Granath et al., 2016; Mazziotta et al., 2018). In summary, the growth of bog vegetation is
538	predicted to have species-specific warming responses that differ in sign and magnitude.

Figure 6 The relative changes of biomass for different PFTs and water table height (the weighted 541 average between hummock and hollow) between +9.00 °C treatment case and the ambient case 542 (+9.00 °C / ambient - 1)

543 544	5. Discussion
545	Sphagnum moss is the principal plant involved in the peat accumulation in peatland
546	ecosystems, and effective characterization of its biophysical and physiological responses
547	has implications for predicting peatland and global carbon, water and climate feedbacks.
548	This study moves us closer to our long-term goal of improving the prediction of peatland
549	water and carbon cycles in ELM, by introducing a new Sphagnum moss PFT,
550	implementing water content dynamics and photosynthetic processes for this nonvascular
551	plant. The Sphagnum model development combined with our previous hummock-hollow
552	microtopography representation and laterally-coupled two-column hydrology scheme
553	enhance the capability of ELM_SPRUCE in simulating high-carbon wetland hydrology
554	and carbon interactions and their responses to plausible environmental changes.
555 556	5.1 Uncertainties in simulating Sphagnum productivity
557	Our predicted peak GPP is similar to the results found by Walker et al. (2017)
558	when they calculated the internal resistance to CO ₂ diffusion as a function of Sphagnum
559	water content using a stand-alone photosynthesis model. In both cases, the predicted peak
560	GPP is lower than observations. Walker et al. (2017) were, however, able to capture the
561	observed peak magnitude with a combination of light extinction coefficient, canopy
562	clumping coefficient, maximum shoot area index (SAI), and a logistic function
563	describing the effective Sphagnum SAI in relation to water table. Here we used model
564	default values for the light extinction and canopy clumping coefficients. While the water
565	table impacts Sphagnum productivity in our simulation, modeled leaf (or shoot) area
566	index (LAI) is mainly controlled by NPP and turnover. Further investigation is thus
567	needed to understand how representative the chamber-based observations from Walker et

- al. (2017) are of the larger-scale SPRUCE enclosures, and to reconcile these GPP
- solution set for the set of the s

570 The water table depth (WTD) is also a key factor that influences the seasonality of 571 GPP in Sphagnum mosses (Lafleur et al., 2005; Riutta 2007, Sonnentag et al, 2010; Grant 572 et al., 2012; Kuiper et al., 2014; Walker et al, 2017). Previous studies have reported that 573 drier and warmer future climates can lower the water table, affecting the resilience of 574 long-term boreal peatland carbon stocks (Limpens et al., 2008, Dise, 2009, Frolking et 575 al., 2011). WTD drawdown affects the net ecosystem productivity of boreal peatlands 576 through its effects on ecosystem respiration and GPP. The interactions between WTD and 577 GPP, however, vary across peatlands and influence both vascular and nonvascular plant 578 GPP in different ways (Lafleur et al., 2005). For instance, nonvascular plants mostly 579 access water in the near surface shallow peat layers. These layers, however, can drain 580 quickly with receding WTD and high nonvascular evaporative demand, and thus depend 581 on water supply through capillary rise or precipitation (Dimitrov et al., 2011, Peichl et al., 582 2014). If recharge is not adequate, near-surface peat desiccation occurs thereby cutting 583 off the supply of water to Sphagnum, which subsequently dries, leading to rapid decline 584 in GPP (Lafleur et al., 2005, Riutta 2008, Sonnentag et al., 2010, Sulman et al., 2010, 585 Dmitrov et al., 2011, Kuiper et al., 2014, Peichl et al., 2014). Alternately, under saturated 586 conditions when the water table is close to the Sphagnum surface, Sphagnum 587 photosynthesizing tissue can become submerged or surrounded by a film of water that is 588 likely to reduce the effective LAI of the Sphagnum and thus reduce photosynthesis 589 (Walker et al., 2017). One study reported that submerged Sphagnum can take up carbon 590 derived from CH4 via symbiotic methanatrophs (Raghoebarsing et al., 2005), but in any

591 cases CO₂ diffusion for photosynthesis will dramatically decrease under water.

592 5.2 Predicted warming response uncertainties 593 594 Our model warming simulations suggested that increasing temperature reduced 595 the *Picea* growth but increased the growth of *Larix* under both ambient and elevated 596 atmospheric CO₂ conditions. The main reason for this model difference in response for 597 the two tree species is that despite their similar productivity under ambient conditions, 598 *Picea* has more respiring leaf and fine root biomass because of lower specific leaf area, 599 longer leaf longevity, and higher fine root allocation. Therefore, warming results in a 600 much larger increase in maintenance respiration relative to changes in NPP for Picea 601 compared to Larix (Fig. 5 and Fig. S2). Increased tree growth and productivity in 602 response to the recent climate warming for high-latitude forests has been reported 603 (Myneni et al., 1997, Chen et al. 1999, Wilming et al. 2004, Chavardes, 2013). On the 604 other hand, reductions in tree growth and negative correlations between growth and 605 temperature also have been shown (Barber et al., 2000; Wilmking et al., 2004; Silva et 606 al., 2010; Juday and Alix 2012; Girardin et al., 2016; Wolken et at., 2016). 607 Our model also predicted increasing growth of shrubs with increased temperature, 608 similar to simulated increase in shrub cover caused mainly by warmer temperatures and 609 longer growing seasons reported by Miller and Smith (2012) using their model LPJ-610 GUESS. In addition, several other modelling studies have also found increased biomass 611 production and LAI related to shrub invasion and replacement of low shrubs by taller 612 shrubs and trees in response to increased temperatures in tundra regions (Zhang et al., 613 2013; Miller and Smith, 2012; Wolf et al., 2008; Rydssa et al., 2017).

614	The responses of Sphagnum mosses to warming simulated by ELM_SPRUCE
615	showed that Sphagnum growth in hollows was consistently higher with increased
616	temperatures, where water availability was not limiting. Sphagnum growing on
617	hummocks, on the other hand, showed negative warming responses and strong
618	dependency on water table height. Previous studies have shown that moss growth may be
619	reduced directly by higher air temperature, due to the relatively low temperature optima
620	of moss photosynthesis (Hobbie et al., 1999), and can be reduced by water stress (Norby
621	et al., 2019). Moreover, increased shading by the shrub canopy and associated leaf litter
622	could indirectly decrease moss growth (Chapin et al., 1995; Hobbie and Chapin 1998;
623	Van der Wal et al., 2005; Walker et al., 2006; Breeuwer et al., 2008. Other studies
624	suggest that Sphagnum growth can be promoted via a cooling effect of shading on the
625	peat surface, by alleviating photo-inhibition of photosynthesis and also by reducing
626	evaporation stress (Busby et al., 1978; Murray et al., 1993; Man et al., 2008; Walker et
627	al., 2015, Bragazza et al., 2016, Mazziotta et al., 2018). Currently ELM_SPRUCE does
628	not include light competition among multiple PFTs, and thus does not represent cross-
629	PFT shading effects. ELM_SPRUCE does predict enhancement of shrub and Larix tree
630	with increased temperatures with both ambient and elevated CO ₂ conditions (the leaf area
631	increasing with warming, Fig. S3). Norby et al. (2019) showed that the fractional cover
632	of different Sphagnum species declined with warming, but while ELM_SPRUCE allows
633	the canopy density of PFTs to change prognostically, their fractional cover is held
634	constant.
635	It is also encouraging that while we did not use leaf-level gas exchange

636 observations in our optimization, the increased maintenance respiration base rate and

637	temperature sensitivity compared to default (table 2) is largely consistent with pre-
638	treatment leaf level observations (Jensen et al., 2019). In the future, a multi-scale
639	optimization framework that can assimilate leaf and plot-level observations
640	simultaneously should lead to improved model predictions and reduced uncertainties for
641	the treatment simulations. If similar patterns observed in ambient conditions continue
642	during the treatments, incorporating seasonal variations in leaf photosynthetic parameters
643	may also further improve the simulated response to warming (Jensen et al., 2019).
644	Overall, while the sensitivity analysis is useful to indicate the key parameters and
645	mechanisms responsible for uncertainty, our ability to quantify prediction uncertainty is
646	limited because we consider only a single simulation with optimized parameters. Ideally,
647	we should perform a model ensemble that represents the full range of posterior
648	uncertainty over simulations that are consistent with the pre-treatment observations, and
649	also a range of possible future meteorological conditions. This is currently being done for
650	SPRUCE with the TECO carbon cycle model (Jiang et al., 2018), but the computational
651	expense of ELM_SPRUCE currently prohibits this approach. By combining new
652	surrogate modeling approaches (e.g. Lu et al., 2019) with MCMC techniques, it may be
653	possible to achieve this in the near future. This will help to reduce prediction
654	uncertainties, which currently prevail in the future carbon budget of peatlands and its
655	feedback to climate change (McGuire et al., 2009).
656	5.3 Outstanding issues and future directions

The present modeling framework works well for hydrological dynamics (Shi et al., 2015), vegetation responses (this study), and reconstructing CH₄ dynamics (Ricciuto et al., in review) within the S1-Bog in Minnesota. It will thus be migrated into the E3SM.

660 However, more developments of ELM_SPRUCE are still needed before widespread

661	applications.
-----	---------------

662	The live green moss layer buffers the exchange of energy and water at soil surface
663	and regulates the soil temperature and moisture because of its high-water holding
664	capacity and the insulating effect (McFadden et al., 2003; Block et al., 2011; Turesky et
665	al, 2012; Park et al., 2018). Nevertheless, we currently include only one Sphagnum moss
666	PFT, and will eventually treat the Sphagnum mosses as the "top" soil layer with a lower
667	thermal conductivity and higher hydraulic capacity than a mineral soil layer (Wu et al.,
668	2016). We also intend to model light competition, the shading effect of shrub expansion,
669	and the changes of Sphagnum community composition. Moreover, the new
670	implementation would allow for the simulation of the moss layer acting as a barrier for
671	the water and energy exchange from the underlying organic soil layer with the
672	atmosphere. In addition, we also plan to investigate the ecosystem consequences of loss
673	of Sphagnum from this ecosystem.
(7)	
6/4	The current model version is not able to simulate the biogeophysical changes that
675	occur due to the long-term accumulation of peat in the bog; however, previous literature

676 reported that there is a need to develop relatively realistic peatland growth models where

677 the rates of ecosystem processes are a function of climate and the inherent autogenic

678 properties of peatlands (Frolking et al., 2010, Belyea and Baird, 2006; Dies, 2009). Thus,

- 679 future work requires modeling the peat accumulation and associated feedbacks among
- 680 hydrology, vegetation communities, and peat properties. This would also facilitate the
- 681 simulation of basic patterns of peat accumulation over millennia in northern peatlands,

- 682 including accumulation rates, vegetation and fen-bog transitions, and future impacts from
- 683 the potential loss of peat under warming scenarios.

684	Nitrogen (N ₂) fixation is a major source of available N in ecosystems that receive
685	low amounts of atmospheric N deposition, like boreal forests and subarctic tundra (Lindo
686	et al., 2013, Weston et al, 2015, Rousk et al., 2016, Kostka et al., 2016). For example,
687	diazotrophs are estimated to supply 40-60% of N input to peatlands (Vile et at., 2014)
688	with high accumulation of fixed N into plant biomass (Berg et al., 2013). Nevertheless,
689	N ₂ fixation is an energy costly process and is inhibited when N availability and reactive
690	nitrogen deposition is high (Gundale et al., 2011; Ackermann et al., 2012; Rousk et al.,
691	2013). This could limit ecosystem N input via the N_2 fixation pathway. A recent study
692	showed that N_2 fixation activity in the S1-bog was negatively correlated with temperature
693	(Carrell at al., 2019). However, for the current ELM_SPRUCE, N ₂ fixation process is
694	only tied to the whole-ecosystem NPP for all PFTs and is not mechanistic. We will focus
695	on this process in future model development.
696	In addition to the simulations aimed at improved understanding of bog response to
697	experimental manipulations at the plot-scale, we are pursuing model implementations at
698	larger spatial scales. The model framework described in this study is capable of
699	performing regional simulations, although the current simulations were designed for
700	mechanistic understanding of Sphagnum mosses hydrological and physiological
701	dynamics at the plot-level. We are already exploring the use of high-resolution gridded
702	domains with explicit vertical and lateral flows as a foundation for more highly
703	parameterized simulations that could allow us to estimate water, energy, and greenhouse
704	gas fluxes for large landscapes in which peatland bogs are an important component.

705 **6. Summary**

706	In this study, we reported the development of a Sphagnum moss PFT and
707	associated processes within the ELM_SPRUCE model. Before being used to examine the
708	ecosystem response to warming and elevated CO2 at a temperate bog ecosystem, the
709	updated model was evaluated against the observed Sphagnum GPP and annual NPP,
710	aboveground tree biomass and shrub stem biomass. The new model can capture the
711	seasonal dynamics of moss Sphagnum GPP, but with lower peak GPP compared to site-
712	level observations, and can predict reasonable annual values for Sphagnum NPP but with
713	lower interannual variation. Our model largely agrees with observed tree and shrub
714	biomass. The model predicts that different PFTs responded differently to warming levels
715	under both ambient and elevated CO ₂ concentration conditions. The NPP of the two
716	dominant tree PFTs (black spruce and Larix) showed contrasting responses to warming
717	scenarios (increasing with warming for Larix but decreasing for black spruce), while
718	shrub NPP had similar warming response to Larix. Hummock and hollow Sphagnum
719	showed opposite warming responses: hollow Sphagnum shows generally higher growth
720	with warming, but the hummock Sphagnum demonstrates more variability and strong
721	dependence with water table height. The ELM predictions further suggest that the effects
722	of CO ₂ fertilization can change the direction of the warming response for the bog
723	peatland ecosystem, though observations of Sphagnum species at the site does not yet
724	appear to support this (Norby et al. 2019).
725	Data availability. The model code we used is available here:

725 Data availability. The model code we used is available here:

- 726 <u>https://github.com/dmricciuto/CLM_SPRUCE</u>. The datasets and scripts were used for the figures
- 727 is here: https://github.com/dmricciuto/CLM_SPRUCE/tree/master/analysis/Shietal2020
- 728
- 729

730 Acknowledgements

- 731 Research was supported by the U.S. Department of Energy, Office of Science,
- 732 Biological and Environmental Research Program. Oak Ridge National Laboratory is
- 733 managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-
- 734 AC05-00OR22725.

735

737 Ackermann, K., Zackrisson, O., Rousk, J., Jones, D. L., and DeLuca, T. H.: N2 fixation 738 in feather mosses is a sensitive indicator of N deposition in boreal forests, Ecosystems, 739 15, 986-998, 2012.

- 740 Barber, V. A., Juday, G. P., and Finney, B. P..: Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress, Nature, 405,668-741 742 673, 2000.
- 743
- 744 Berg, A., Danielsson, A., and Sevensson, B.H.: Transfer of fixed-N from N2-fixing 745 cyanobacteria associated with moss sphagnum riparium results in enhanced growth of the moss, plant and soil, 362, 271-278, https://doi.org/10.1007/s11104-012-1278-4, 746 747 2013.
- Belyea, L. R. and Baird, A. J.: Beyond "The limits to peat bog growth": Cross-scale 748 749 feedback in peatland development, Ecol. Monogr., 76, 299-322, 2006.
- 750 Blok, D., Heijmans, M., Schaepman-Strub, G., Van Ruijven, J., Parmentier, F.,
- Maximov, T., and Berendse, F.: The cooling capacity of mosses: Controls on water 751 752 and energy fluxes in a Siberian tundra site, Ecosystems, 14, 1055-1065, 2011.
- 753 Bond-Lamberty, B., Peckham, S. D., Ahl, D. E., and Gower, S. T.: Fire as the dominant 754 driver of central Canadian boreal forest carbon balance, Nature, 450, 89-92, 2007.
- 755 Bragazza, L., Buttler, A., Robroek, B. J., Albrecht, R., Zaccone, C., Jassey, V. E., and 756 Signarbieux, C.: Persistent high temperature and low precipitation reduce peat carbon accumulation, Global Change Biology, 22, 4114-4123,
- 757
- 758 https://doi.org/10.1111/gcb.13319, 2016.
- 759 Breeuwer, A., Heijmans, M. M., Robroek, B. J., and Berendse, F.: The effect of 760 temperature on growth and competition between Sphagnum
- 761 species, Oecologia, 156(1), 155-167, doi:10.1007/s00442-008-0963-8, 2008.
- Brown, S. M., Petrone, R. M., Mendoza, C., and Devito, K. J.: Surface vegetation 762 763 controls on evapotranspiration from a sub-humid Western Boreal Plain wetland,
- 764 Hydrological Processes, 24(8), 1072-1085, 2010.

- Busby, J.R., Bliss, L.C., and Hamilton, C.D.: Microclimate control of growth rates and
 habitats of the Boreal Forest Mosses, Tomenthypnum nitens and Hylocomium
- 767 splenden, Ecol Monogr, 48, 95-110, 1978.
- Burrows, S.M., Maltrud, M.E., Yang, X., Zhu, Q., Jeffery, N., Shi., X., Ricciuto, D.M.,
 Wang, S., Bisht, G., Tang, J., Wolfe, J. D., Harrop, B. E., Singh, B., Brent, L., Zhou,
- Tian, Cameron-Smith P. J., Keen, N., Collier, N., Xu, M., Hunke, E.C., Elliott, S.M.,
- Turner, A.K., Li, H., Wang, H., Golaz, J.-C., Bond-Lamberty, B., Hoffman, F.M.,
- Riley, W.J., Thornton, P.E., Calvin, K., and Leung, L.R.: The DOE E3SM coupled
- 773 model v1.1 biogeochemistry configuration: overview and evaluation of coupled
- carbon-climate experiments, J. Adv. Model Earth Sy., in review, 2019.
- 775 Gorham, E.: Northern peatlands: role in the carbon cycle and probable responses to
- climatic warming, Ecological Applications, 1, 182-195, 1991.
- Camill, P. and Clark, J. S.: Long-term perspectives on lagged ecosystem responses to
 climate change: permafrost in boreal peatlands and the grassland/woodland boundary,
 Ecosystems, 3, 534–544, 2000.
- 780 Chapin, F. S. III, Shaver, G.R., Giblin, A.E., Nadelhoffer, K.J., and Laundre, J.A.:
- Responses of Arctic tundra to experimental and observed changes in climate, Ecology,
 76, 694-711, 1995.
- Carrell, A.A., Kolton, M., Warren, M.J., Kostka, J.E., and Weston, D. J.: Experimental
 warming alters the community composition, diversity, and N2 fixation activity of peat
 moss (Sphagnum fallax) microbiomes, Glob. Change Biol., 25, 2993-3004,
- 786 dio:10.1111/gcb.14715, 2019.
- Chavardes, R. D., L. D. Daniels, P. O. Waeber, J. L.Innes, and C. R. Nitschke.: Unstable
 climate-growth relations for white spruce in southwest Yukon, Canada, Climatic
 Change, 116, 593-611, 2013.
- Chen, W. J., Black, T. A., Yang, P.C. Barr, A.G. Neumann, H. H., Nešić, Z., Blanken, P.
 D. Novak, M. D., Eley, J., Ketler, R., and Cuenca, R. H.:Effects of climatic variability
 on the annual carbon sequestration by a boreal aspen forest, Glob. Change Biol., 5, 4153, 1999.
- Clymo, R. S. and Hayward, P.M.: The ecology of Sphagnum, in: Bryophyte Ecology,
 edited by: Smith, A. I. E., Chapman and Hall Ltd., London, New York, 229-289, 1982.
- Collatz, G.J., Ball, J.T., Grivet, C. and Berry, J.A.: Physiological and environmentalregulation of stomatal conductance, photosynthesis and transpiration a model that
 includes a laminar boundary-layer, Agricultural and Forest Meteorology, 54, 107136,1991.
- Collatz, G.J., Ribas-Carbo, M. and Berry, J.A.: Coupled photosynthesis- stomatal model
 for leaves of C4 plants, Australian Journal of Plant Physiology, 19, 519-538, 1992.

- 802 Cornelissen, H.C., Lang, S.I., Soudzilovskaia, N.A., and During, H.J.: Comparative
- 803 cryptogam ecology: a review of bryophyte and lichen traits that drive
- biogeochemistry, Annals of Botany, 99, 987–1001, 2007.
- Bavidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition
 and feedbacks to climate change, Nature, 440, 165-173, 2006.
- Binitrov, D. D., Grant, R. F., LaFleur, P. M., and Humphreys, E.: Modelling the effects
 of hydrology on gross primary productivity and net ecosystem productivity at Mer
 Bleue bog, J. Geophys. Res.-Biogeo, 116, G04010, doi:10.1029/2010JG001586, 2011.
- 810 Dise, N. B.: Peatland response to global change, Science, 326, 810- 811,
- 811 https://doi.org/10.1126/science.1174268, 2009.

812 Dorrepaal, E., Toet, S., van Logtestijn, R. S. P., Swart, E., van de Weg, M. J., Callaghan,

- T. V., and Aerts, R.: Carbon respiration from subsurface peat accelerated by climate
 warming in the sub- arctic, Nature, 460, 616-619, 2009.
- Buarte, H. F., Raczka, B. M., Ricciuto, D. M., Lin, J. C., Koven, C. D., Thornton, P. E.,
 Bowling, D. R., Lai, C. T., Bible, K. J. and Ehleringer, J. R.: Evaluating the
- 817 Community Land Model (CLM4.5) at a coniferous forest site in northwestern United
- States using flux and carbon-isotope measurements, Biogeosciences, 14(18): 4315-
- 819 4340, DOI: 10.5194/bg-14-4315-2017, 2017.
- Euskirchen, E.S., McGuire, A.D., Chapin, F.S. III, Yi, S., and Thompson, C.C.: Changes
 in vegetation in northern Alaska under scenarios of climate change, 2003–2100:
- implications for climate feedbacks, Ecological Applications 19: 1022-1043, 2009.
- Farquhar, G.D., von Caemmerer, S. and Berry, J.A.: A biochemical model of
 photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90, 1980.
- Frolking, S. and Roulet, N.T.: Holocene radiative forcing impact of northern peatland
 carbon accumulation and methane emissions, Glob. Change Biol. 13, 1079-1088,
- 827
- 828
- Frolking, S., Roulet, N. T., Tuittila, E., Bubier, J. L., Quillet, A., Tal- bot, J., and Richard,
 P. J. H.: A new model of Holocene peatland net primary production, decomposition,
 water balance, and peat accumulation, Earth Syst. Dynam., 1, 1-21, doi:10.5194/esd-1-
- 832 1-2010, 2010.

2007.

- Frolking, S., Talbot, J., Jones, M. C., Treat, C. C., Kauffman, Tuittila E.-S., and Roulet,
 N.: Peatlands in the Earth's 21st century coupled climate-carbon system, Environ.
 Rev., 19, 371-396, 2011.
- Girardin, M. P., Bouriaud, O., Hogg, E. H., Kurz, W., Zimmermann, N. E., Metsaranta, J.
 M., Jong, Rogier de, Frank, D. C., Esper, J., Büntgen, U., Guo, X., and Bhatti, J.: No
- 838 growth stimulation of Canada's boreal forest under half-century of combined warming

- and CO₂ fertilization, Proceedings of the National Academy of Science, 113(52),
- 840 E8406–E8414, 2016.
- 841 Goetz, J.D., and Price, J.S.: Role of morphological structure and layering of Sphagnum
- and Tomenthypnum mosses on moss productivity and evaporation rates, Canadian
- 843 Journal of Soil Sciences. DOI:10.4141/ CJSS-2014-092, 2015.
- Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D.,
- Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D.C., Baldwin, S. A., Bisht, G.,
- 846 Bogenschutz, P. A., Branstetter, M., Brunke, M., A., Brus, S.R., Burrows, S.M.,
- 847 Cameron-Smith P. J., Donahue, A. S., Deakin, M., Easter, R. C., Evans, K. J., Feng,
- 848 Y., Flanner, M., Foucar, J., G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E.,
- 849 Hoffman, M. J., Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W.,
- 850 Klein, S. A., Larson, V. E., Leung, L. R., Li, H., Lin, W., Lipscomb, W.H., Ma, P.-L.,
- 851 Mahajan, S., Maltrud, M., E., Mametjanov, A., McClean, J. L., McCoy, R. B., Neale,
- 852 R.B., Price, S. F., Qian, Y., Rasch, P. J., Reeves Eyre, J.E.J., Riley, W. J., Ringler, T.
- D., Roberts, A. F., Roesler, E. L., Salinger, A. G., Shaheen, Z., Shi, X., Singh, B.,
- Tang, J., Taylor, M. A., Thornton, P. E., Tuner, A. K., Veneziani, M., Wan, H., Wang,
- 855 H., Wang, S., Williams, D. N., Wolfram, P. J., Worley, P. H., Xie, S., Yang, Y., Yoon,
- J.-H., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang, K., Zhang, Y.,
- 857 Zheng, X., Zhou, T., Zhu, Q.: The DOE E3SM coupled model version 1: Overview
- and evaluation at standard resolution, J. Adv. Model Earth Sy, 11(7), 2089-2129,
- 859 https://doi.org/10.1029/2018MS001603, 2019.
- Gong, J., Roulet, N., Frolking, S., Peltola, H., Laine, A.M., Kokkonen, N., and Tuittila,
 E.-S.: Modelling the habitat preference of two key sphagnum species in a poor fen as
- 862 controlled by capitulum water retention, Biogeosciences Discussions,
- 863 https://dio.org/10.5194/bg-2019-366, 2019.
- Gorham, E.: Northern peatlands: role in the carbon cycle and probable responses to
 climatic warming, Ecological Applications, 1, 182-195, 1991.
- Grant, R. F., Desai, A. R., and Sulman, B. N.: Modelling contrasting responses of
 wetland productivity to changes in water table depth, Biogeosciences, 9, 4215-4231,
 2012.
- Granath, G., Limpens, J., Posch, M., Mücher, S., and De Vries, W.: Spatio-temporal
 trends of nitrogen deposition and climate effects on Sphagnum productivity in
 European peatlands, Environmental Pollution, 187, 73-80, https://doi.org/10.1016/j.
- European peatiands, Environmental Pollution, 187, 75-80, https://doi.org/10.1016/j.
 envpol.2013.12.023, 2014Griffiths, N. A., and Sebestyen, S. D.: Dynamic vertical
- b) profiles of peat porewater chemistry in a northern peatland, Wetlands, 36(6), 11191130, 2016.
- Griffiths, N. A., and Sebestyen, S. D.: Dynamic vertical profiles of peat porewater
 chemistry in a northern peatland, Wetland, 36, 1119-1130, doi:10.1007/s13157-0160829-5, 2016.
- 878 Griffiths, N. A., Hanson, P. J., Ricciuto, Iversen, C. M., Jensen, A.M., Malhotra, A.,
- 879 McFarlane, K. J., Norby, R. J., Sargsyan, K., Sebestyen, S. D., Shi, X., Walker, A. P.,
- 880 Ward, E. J., Warren, J. M., and Weston, D, J.:Temporal and spatial variation in

- peatland carbon cycling and implications for interpreting responses of an ecosystem-
- scale warming experiment, Soil Sci. Soc. Am. J., 81(6), 1668-1688,
- doi:10.2136/sssaj2016.12.0422, 2018.
- 884 Gundale, M.J., DeLuca, T.H., and Nordin, A.: Bryophytes attenuate anthropogenic
- nitrogen inputs in boreal forests, Glob. Change Biol., 17, 2743-2753, 2011.
- Hanson, P. J., Riggs, J.S., Nettles, W. R., Krassovski, M. B., and Hook L. A.: SPRUCE
 deep peat heating (DPH) environmental data, February 2014 through July 2015, Oak
 Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge,
 Tennessee, U.S.A. https://doi.org/10.3334/CDIAC/spruce.013, 2015a.
- 890 Hanson, P.J., Riggs, J.S. Dorrance, C., Nettles, W.R., and Hook, L.A.: SPRUCE
- 891 Environmental Monitoring Data: 2010-2016. Carbon Dioxide Information Analysis
- 892 Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,
- 893 Tennessee, U.S.A. http://dx.doi.org/10.3334/CDIAC/spruce.001, 2015b.
- Hanson, P. J., Gill, A. L., Xu, X., Phillips, J. R., Weston, D. J., Kolka, R. K., Riggs, J.
 S., and Hook, L. A.: Intermediate-scale community-level flux of CO2 and CH4 in a
 Minnesota peatland: putting the SPRUCE project in a global context,
- Biogeochemistry, 129(3), 255-272, 2016.
- Hanson, P. J., Riggs, J.S., Nettles, W.R., Phillips, J.R., Krassovski, M.B., Hook, L.A.,
- Gu, L., Richardson, A.D., Aubrecht, D.M., Ricciuto, D.M., Warren, J.M., and Barbier,
 C.: Attaining whole-ecosystem warming using air and deep-soil heating methods with
 an elevated CO2 atmosphere, Biogeosciences, 14, 861-883, 2017.
- 902
- Hanson, P.J., Phillips, J.R., Wullschelger, S. D., Nettles, W. R., Warren, J. M., Ward, E.
 J.: SPRUCE Tree Growth Assessments of Picea and Larix in S1-Bog Plots and
 SPRUCE Experimental Plots beginning in 2011, Oak Ridge National Laboratory, TES
- 905 SPRUCE Experimental Plots beginning in 2011, Oak Ridge National Laborator 906 SFA, U.S. Department of Energy, Oak Ridge, Tennessee,
- 907 U.S.A. https://doi.org/10.25581/spruce.051/1433836, 2018a.
- 908
- Hanson, P.J., Phillips, J.R., Brice, D.J., and Hook, L.A.: SPRUCE Shrub-Layer Growth
 Assessments in S1-Bog Plots and SPRUCE Experimental Plots beginning in
- 910
 Assessments in S1-Bog Plots and SPKUCE Experimental Plots beginning in

 011
 2010. Oak Bidge National Laboratory, TEC SEA, U.S. Departmental Flots
- 911 2010. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak
- 912 Ridge, Tennessee, U.S.A. https://doi.org/10.25581/spruce.052/1433837, 2018b.
- Heijmans, M.M.P.D., Arp, W.J., and Chapin, F.S. III.: Carbon dioxide and water vapour
 exchange from understory species in boreal forest, Agricultural and Forest
- 915 Meteorology 123,135-147, DOI:10.1016/j. agrformet.2003.12.006, 2004a.
- Heijmans, M.M.P.D, Arp, W.J., and Chapin, F.S. III.: Controls on moss evaporation in a
 boreal black spruce forest. Global Biogeochemical Cycles 18(2), 1-8,
- 918 DOI:10.1029/2003GB002128, 2004b.
- 919 Heijmans, M.M. P. D., Mauquoy, D., van Geel, B., and Berendse, F.: Long-term effects
- 920 of climate change on vegetation and carbon dynamics in peat bogs. Journal of
- 921 Vegetation Science 19, 307-320, 2008.

- Hobbie, S.E., and Chapin, F.S. III.: The response of tundra plant biomass, aboveground
 production, nitrogen, and CO2 flux to experimental warming, Ecology, 79,1526-1544,
- 924 1998.
- Hobbie, S.E., Shevtsova, A., and Chapin, F.S.III.: Plant responses to species removal and
 experimental warming in Alaskan Tus- sock Tundra. Oikos 84,417-434, 1999.
- Ise, T., Dunn, A. L., Wofsy, S. C., and Moorcroft, P. R.: High sensitivity of peat
 decomposition to climate change through water table feedback, Nat. Geosci., 1, 763-
- 929 766, 2008.
- Jensen, A.M., Warren, J. M., Hook, L. A., Wullschleger, S. D., Brice, D.J., Childs, J.,
 and Vander Stel, H.M.: SPRUCE S1 Bog Pretreatment Seasonal Photosynthesis and
 Respiration of Trees, Shrubs, and Herbaceous Plants, 2010-2015, Oak Ridge National
 Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.,
- Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.,
 https://doi.org/10.3334/CDIAC/spruce.008, 2018.
- 935 Jensen, A.M., Warren, J. M., King, A., Ricciuto, D.M., Hanson, P. J., and Wullschleger,
- 936 S. D.:Simulated projections of boreal forest peatland ecosystem productivity are
- 937 sensitive to observed seasonality in leaf phenology, Tree Physiology, 39(4), 556-572,
 938 doi: 10.1093/treephys/tpy140, 2019.
- 939
- Jiang, J., Huang, Y., Ma, S., Stacy, M., Shi, Z., Ricciuto, D. M., Hanson, P. J., and Luo,
 Y.: Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO₂ and
 a Gradient of Experimental Warming, J. Geophys. Res.-Biogeo, 123(3), 1057-1071,
 doi: 10.1002/2017JG004040, 2018.
- Juday, G. P., and Alix, C.: Consistent negative temperature sensitivity and positive
 influence of precipitation on growth of floodplain Picea glaucain Interior Alaska,
 Canadian Journal of Forest Research, 42, 561-573, 2012.
- 947
- 948
- Kostka, J.E., Weston, D.J., Glass, J.B., Lilleskov, E.A., Shaw, A.J., and Turetsky, M.R.:
 The Sphagnum microbiome: new insights from an ancient plant lineage, New
 Phytologist, 211(1):57-64, 2016
- Kuiper, J. J., Mooij, W. M., Bragazza, L., and Robroek, B. J.: Plant functional types
 define magnitude of drought response in peatland CO₂ exchange, Ecology, 95, 123131, https://doi.org/10.1890/13-0270.1, 2014.
- Lafleur, P. M., Hember, R. A., Admiral, S. W., and Roulet, N. T.: Annual and seasonal
 variability in evapotranspiration and water table at a shrub-covered bog in southern
 Ontario, Canada, Hydrol. Process., 19, 3533–3550, https://doi.org/10.1002/hyp.5842,
 2005.
- Launiainen, S., Katul, G. G., Lauren, A., and Kolari, P.: Coupling boreal forest CO₂, H₂O
 and energy flow by a vertically structured forest canopy-Soil model with separate

- bryophyte layer. Ecological Modelling, 312, 385-405.
- 962 https://doi.org/10.1016/j.ecolmodel.2015.06.007, 2015.
- 963 Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., Roulet,
- N., Rydin, H., and Schaepman-Strub, G.:Peatlands and the carbon cycle: From local processes to global implications-A synthesis, Biogeosciences, 5(5), 1475-1491,
- 966 doi:10.5194/bg-5-1475-2008, 2008.
- Lindo, Z, and Gonzalez, A.: The bryosphere: an integral and influential component of the
 earth's biosphere, Ecosystems, 13, 612–627, 2010.
- 969 Lindo, Z., Nilsson, M.C., and Gundale, M.J.: Bryophyte-cyanobacteria associations as
- 970 regulators of the northern latitude carbon balance in response to global change, Glob.
 971 Change Biol., 19(7),2022-35, 2013.
- Lu, D., Ricciuto, D.M., Stoyanov, M., and Gu, L.: Calibration of the E3SM Land Model
 Using Surrogate-Based Global Optimization, J Adv Model Earth Sy, 10(6), 13371356, doi: 10.1002/2017ms001134, 2018.
- , 2010. 10.1002, 2017 II.S00112 I, 2010.
- Lu, D., and Ricciuto, D.M.: Efficient surrogate modeling methods for large-scale Earth
 system models based on machine-learning techniques, Geosci Model Dev, 12(5),
 1791-1807, doi: 10.5194/gmd-12-1791-2019, 2019.
- Man, R., Kayahara, G.J., Rice, J.A., and MacDonald, G.B.: Eleven- year responses of a
 boreal mixedwood stand to partial har- vesting: light, vegetation, and regeneration
 dynamics, For Ecol Manag 255,697-706, 2008.
- Mazziotta, A., Granath, G., Rydin, H. and Bengtsson F.: Scaling functional traits to
 ecosystem processes: Towards a mechanistic understanding in peat mosses, Journal of
 Ecology, DOI:10.1111/1365-2745.13110, 2018.
- Metcalfe, D. B., Ricciuto D. M., Palmroth, S., Campbell, Hurry, C., V., Mao, J., Keel, S.
 G., Linder, S., Shi, X., Näsholm, T., Ohlsson, K. E. A., Blackburn, M., Thornton, P. E.
 and Oren, R.: Informing climate models with rapid chamber measurements of forest
 carbon uptake, Global Change Biology, 23(5), 2130-2139, DOI: 10.1111/gcb.13451,
 2017.
- McFadden, J.P., Eugster, W., Chapin, F.S.III.: A regional study of the controls on water
 vapor and CO2 exchange in Arctic tundra, Ecology, 84,2762-76, 2003.
- 991 McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L., Hayes, D.
- J., Heimann, M., Lorenson, T. D., Macdonald, R. W. and Roulet, N.: Sensitivity of the carbon cycle in the Arctic to climate change, Ecol. Monogr., 79, 523-555, 2009.
- Miller, P. A. and Smith, B.: Modelling Tundra Vegetation Response to Recent Arctic
 Warming, Ambio, 41, 281-291, https://doi.org/10.1007/s13280-012-0306-1, 2012.

996 997 998	Mokhov, I.I., Eliseev, A.V., and Denisov, S.N.: Model diagnostics of variations in methane emissions by wetlands in the second half of the 20th century based on reanalysis data, Dokl. Earth Sci., 417(1),1293-1297, 2007.
999 1000 1001	Moore, T.R., Roulet, N.T., and Waddington, J.M.: Uncertainty in predicting the effect of climate change on the carbon cycling of Canadian peatlands, Clim. Change, 40, 229-245, 1998.
1002 1003 1004	Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R.: Increased plant growth in the northern high latitudes from 1981 to 199,1 Nature, 386,698-702, 1997.
1005 1006	Murray, K.J., Tenhunen, J.D., and Nowak, R.S.: Photoinhibition as a control on photosynthesis and production of Sphagnum mosses, Oecologia, 96,200-207, 1993.
1007 1008 1009	Nichols, J.E., and Peteet, D.M.: Rapid expansion of northern peatlands and doubled estimate of carbon storage, Nat. Geosci. 12, 917-921, doi:10.1038/s41561-019-0454-z, 2019.
1010 1011 1012	Nilsson, M.C., and Wardle, D.A.: Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest, Frontiers in Ecology and the Environment, 3, 421-428, 2005.
1013 1014 1015 1016	Norby, R.J., and Childs, J.: Sphagnum productivity and community composition in the SPRUCE experimental plots. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. http://dx.doi.org/10.3334/CDIAC/spruce.xxx, 2017.
1017 1018 1019 1020	 Norby, R.J., Childs, J., Hanson, P.J., and Warren, J.M.: Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog, Ecology and Evolution, 9(22), 12571-12585, https://doi.org/10.1002/ece3.5722, 2019. Nungesser, M. K.: Modelling microtopography in boreal peatlands:Hummocks and hollows. Ecol. Model, 165(2, 3), 175, 207, 2003.
1021	nonows, Ecol. Model.,105(2-5), 175-207, 2005.
1023 1024 1025 1026	Oechel, W.C., and Van Cleve, K.: The role of bryophytes in nutrient cycling in the taiga, in Ecological Studies, Vol. 57: Forest Ecosystems in the Alaskan Taiga, edited by: Van Cleve, K., Chapin III, F. S., Flanagan, P.W., Viereck, L.A., and Dyrness, C.T., Springer-Verlag, New York, 121-137,1986.
1027 1028 1029 1030 1031 1032	 Oleson, K. W., Lawrence, D. W., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque, J., Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., and Yang, Z.: Technical description of version 4.5 of the Community Land Model (CLM), NCAR/TN-503+STR, NCAR Technical Note, 2013.
1033 1034 1035	Park, H., Launiainen, S., Konstantinov, P. Y., Iijima, Y., and Fedorov, A. N.: Modeling the effect of moss cover on soil temperature and carbon fluxes at a tundra site in northeastern Siberia, J. Geophys. ResBioge, 123, 3028-3044, https://doi.org/

1036 10.1029/2018JG004491, 2018.

1037

1038	and Hanson, P. J.: Uncertainty in peat volume and soil carbon estimated using ground-
1039	penetrating radar and probing. Soil Sci. Soc. Am. J., 76, 1911-1918. DOI:
1040	10.2136/sssaj2012.0040, 2012.
1041	Pastor, J., Peckham, B., Bridgham, S., Weltzin, J., and Chen, J.: Plant community
1042	dynamics, nutrient cycling, and alternative stable equilibria in peatlands, The
1043	American Naturalist 160, 553-568, 2002.
1044	Peichl, M., Öquist, M., Löfvenius, M. O., Ilstedt, U., Sagerfors, J., Grelle, A., Lindroth,
1045	A., and Nilsson, M. B.: A 12-year record reveals pre-growing season temperature and
1046	water table level threshold effects on the net carbon dioxide exchange in a boreal fen,
1047	Environ. Res. Lett., 9, 055006, https://doi.org/10.1088/1748- 9326/9/5/055006, 2014.
1048	Petrone, R., Solondz, D., Macrae, M., Gignac, D., and Devito, K.J.; Microtopographical
1049	and canopy cover controls on moss carbon dioxide exchange in a western boreal plain
1050	peatland. Ecohydrology, 4, 115-129, 2011.
1051	Raczka, B., Duarte, H. F., Koven, C. D., Ricciuto, D.M., Thornton, P. E., Lin, J. C. and
1052	Bowling, D. R.: An observational constraint on stomatal function in forests: evaluating
1053	coupled carbon and water vapor exchange with carbon isotopes in the Community
1054	Land Model (CLM4.5), Biogeosciences, 13(18), 5183-5204, DOI: 10.5194/bg-13-
1055	5183-2016, 2016.
1056	Raghoebarsing, A. A., Smolders, A.J.P., Schmid, M.C., Rijpstra, W.I.C., Wolters-Arts,
1057	M., Derksen, J., Jetten, M.S.M., Schouten, S., Sinninghe Damsté, J.S., Lamers,
1058	L.P.M., Roelofs, J.G.M., Op den Camp, H.J.M., and Strous, M.: Methanotrophic
1059	symbionts provide carbon for photosynthesis in peat bogs. Nature, 436, 1153-1156,
1060	doi:10.1038/nature03802, 2005.
1061	
1062	Ricciuto, D. M., Sargsyan, K., and Thornton, P.E.: The Impact of Parametric
1063	Uncertainties on Biogeochemistry in the E3SM Land Model, J Adv Model Earth Sy,
1064	10(2), 297-319, doi: 10.1002/2017ms000962, 2018.
1065	Ricciuto, D.M., Xu, X., Shi, X., Wang, Y., Song, X., Schadt, C.W., Griffiths, N. A., Mao,
1066	J., Warre, J.,M., Thornton, P.E., Chanton, J., Keller, J., Bridgham, S., Gutknecht, J.,
1067	Sebestyen, S. D., Finzi, A., Kolka, R., and Hanson P.J.: An Integrative Model for Soil
1068	Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis,
1069	J. Geophys. ResBiogeo, In review, 2019.
1070	Riutta, T., Laine, J., and Tuittila, ES.: Sensitivity of CO2 exchange of fen ecosystem
1071	componetns to water level variation, Ecosystem, 10(5), 718-733, 2007.
	· · · · · · · · · · · · · · · · · · ·
1072	Robroek, B.J.M., Limpens, J., Breeuwer, A., and Schouten, M.G.C.: Effects of water
1073	level and temperature on performance of four Sphagnum mosses. Plant
1074	Ecology, 190, 97-107, 2007.
1075	Robroek, B.J.M., Schouten, M.G.C., Limpens, J., Berendse F. and Poorter, H.: Interactive
1076	effects of water table and precipitation on net CO2 assimilation of three co-occurring
1077	Sphagnum mosses differing in distribution above the water table, Glob. Change Biol.,

Parsekian, A. D., Slater, L., Ntarlagiannis, D., Nolan, J., S. Sebestyen, D., Kolka, R. K.,

1078	15,	680-691.	2009.
1010	,		

1079	Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, O., Casassa, G., Menzel, A.,
1080	Root, T., Estrella, N., Seguin, B., Tryjanowski, P., Liu, C., Ravlins, S., and Imeson,
1081	A.: Attributing physical and biological impacts to anthropogenic climate
1082	change, Nature, 453, 353-357, doi:10.1038/nature06937, 2008.
1083	Rydin, H., and Jeglum, J.: The Biology of Peatlands, 343 pp., Oxford University Press,
1084	New York. 2006.
1085	Rousk, K., Rousk, J., Jones, D.L., Zackrisson, O., DeLuca, and T.H.: Feather moss
1086	nitrogen acquisition across natural fertility gradients in boreal forests, Soil Biol
1087	Biochem, 61, 86-95, 2013.
1088	Rousk, K., and Michelsen, A.: The sensitivity of Moss-Associated Nitrogen Fixtion
1089	towards Repeated Nitrogen Input, Plos One, 11(1), e0146655,
1090	https://doi.org/10.1371/journal.pone.0146655, 2016.
1091	Rydsaa, J. H., Stordal, F., Bryn, A., and Tallaksen, L. M.: Effects of shrub and tree cover
1092	increase on the near-surface atmosphere in northern Fennoscandia, Biogeosciences,
1093	14, 4209-4227, https://doi.org/10.5194/bg-14-4209-2017, 2017.
1094	
1095	Sargsyan, K., Safta, C., Najm, H. N., Debusschere, B. J., Ricciuto, D.M., and Thornton,
1096	P.E.: Dimensionality Reduction for Complex Models Via Bayesian Compressive
1097	Sensing, International Journal for Uncertainty Quantification, 4(1), 63-93, doi:
1098	10.1615/Int.J.UncertaintyQuantification.2013006821, 2014.
1099	Sebestyen, S. D., Dorrance, C., Olson, D. M., Verry, E. S., Kolka, R. K., Elling, A. E.,
1100	and Kyllander, R.: Long-term monitoring sites and trends at the Marcell Experimental
1101	Forest, in: Peatland biogeochemistry and watershed hydrology at the Marcell
1102	Experimental Forest, edited by: Kolka, R. K. Sebestyen, S. D., Verry, E. S., and
1103	Brooks, CRC Press, New YorK, 15-71, 2011.
1104	Shi, X., Thornton, P. E., Ricciuto, D. M., Hanson, P. J., Mao, J., Sebestyen, S. D.,
1105	Griffiths, N. A., and Bisht, G.: Representing northern peatland microtopography and
1106	hydrology within the Community Land Model, Biogeosciences, 12(21), 6463-6477,
1107	https://doi.org/10.5194/bg-12-6463-2015, 2015.
1108	Silva, L. C. R., Anand, M., and Leithead, M. D.: Recent widespread tree growth decline
1109	despite increasing atmospheric CO2, PLoS ONE, 5(7), e11543, doi:
1110	10.1371/journal.pone.0011543, 2010.
1112	Sonnentag, O., Van Der Kamp, G., Barr, A.G., and Chen, J.: on the relationship between
1113	water table depth and water vapor and carbon dioxide fluxes in a minerotrophic fen,
1114	Glob. Change Biol., 16(6), 1761-1776, https://doi.org/10.1111/j.1365-
1115	2486.2009.02032.x, 2010.
1116	St-Hilaire, F., Wu, J., Roulet, N. T., Frolking, S., Lafleur, P. M., Humphreys, E. R., and
1117	Arora, V.: McGill wetland model: evalu- ation of a peatland carbon simulator
1118	developed for global assessments, Biogeosciences, 7, 3517-3530, 2010.

- 1119 Sulman, B. N., Desai, A. R., Saliendra, N. Z., Lafleur, P. M., Flana- gan, L. B.,
- 1120 Sonnentag, O., Mackay, D. S., Barr, A. G., and Kamp, G. V. D.: CO2 fluxes at
- 1121 northern fens and bogs have opposite responses to inter-annual fluctuations in water
- 1122 table, Geophys. Res. Lett., 37, L19702, doi:10.1029/2010GL044018, 2010.
- 1123 Tarnocai, C.: The effect of climate change on carbon in Canadian peatlands, Glob Planet 1124 Change, 53, 4, 222-232, 2006.
- Tenhunen, J.D., Weber, J.A., Yocum, C.S. and Gates, D.M.: Development of a
 photosynthesis model with an emphasis on ecological applications, Oecologia, 26,101119, 1976.
- 1128
- Tian, H., Lu,C., Yang, J., Banger, K., Huntinzger, D. N., Schwalm, C. R., Michalak, A.
 M., Cook, R., Ciais, P., Hayes, D., Huang, M., Ito, A., Jacobson, A., Jain,A., Lei, H.,
 Mao,J., Pan, S., Post, W.M, Peng, S., Poulter,B., Ren, W., Ricciuto,D.M., Schaefer, K.,
 Shi, X., Tao,B., Wang, W., Wei, Y., Yang, Q., Zhang, B., and Zeng, N.: Global patterns
 of soil carbon stocks and fluxes as simulated by multiple terrestrial biosphere models:
 sources and magnitude uncertainty, Global Biogeochem Cycles, 29, 775-792.
 doi:10.1002/2014GB005021, 2015.
- 1136 Titus, J. E., Wagner, D.J., and Stephens, M.D.: Contrasting Water Relations of 1137 Photosynthesis for 2 Sphagnum Mosses, Ecology, 64, 1109-1115, 1983.
- 1138 Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C.,
- 1139 Schuur, E. A. G., and Allison, S. D.: Causes of variation in soil carbon simulations
- from CMIP5 Earth system models and comparison with observations, Biogeosciences,
- 1141 10, 1717–1736, doi:10.5194/bg-10-1717-2013, 2013.
- Turetsky, M. R., Wieder, R. K., and Vitt, D. H.: Boreal peatland C fluxes under varying
 permafrost regimes, Soil Biol. Biochem., 34,907-912, 2002.
- Turetsky, M.R., Mack, M.C., Hollingsworth, T.N., and Harden, J.W.: The role of mosses
 in ecosystem succession and function in Alaska's boreal forest, Canadian Journal of
 Forest Research 4, 1237-1264, 2010.
- Turetsky, M. R., Bond-Lamberty, B., Euskirchen, E., Talbot, J., Frolking, S., McGuire,
 A. D., and Tuittila, E.-S.: The resilience and functional role of moss in boreal and arctic ecosystems, New Phytol., 196, 49-67, doi:10.1111/j.1469-8137.2012.04254.x,
 2012.
- 1152 Van, B. N.: How Sphagnum bogs down other plants, Trends Ecol. Evol, 10, 270-275, 1995.
- 1154

1151

van der Schaaf, S.: Bog hydrology, in: Conservation and Restoration of Raised Bogs:
Geological, Hydrological and Ecological Studies, edited by: Schouten, M.G.C., The
Government Stationery Office, Dublin, 54-109, 2002.

van der Wal, R., Pearce, I.S.K and Brooker, R.W.: Mosses and the struggle for light in a
nitrogen-polluted world, Oecologia, 142,159-68, 2005.

- Verry, E. S., and Jansenns, J.: Geology, vegetation, and hydrology of the S2 bog at the
 MEF: 12,000 years in northern Minnesota, in Peatland biogeochemistry and watershed
- 1162 hydrology at the Marcell Experimental Forest, edited by R. K. Kolka S. D.
- 1163 Sebestyen, E. S. Verry, K.N. Brooks, CRC Press, New YorK, 93-134, 2011.
- 1164
- Vile, M. A., Kelman Wieder, R., Živković, T., Scott, K. D., Vitt, D. H., Hartsock, J. A., Iosue, C. L., Quinn, J.C., Petix, M., Fillingim, H.M., Popma, J.M.A., Dynarski, K.A., Jackman, T. R., Albright, C.M., and Wykoff, D. D. : N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands, Biogeochemistry, 121, 317-328, https://doi.org/10.1007/ s10533-014-0019-6, 2014.
 Vitt, D. H.: A key and review of bryophytes common in North American peatlands,
- 1171 Evansia, 31, 121-158, 2014.
- Wania, R., Ross, I., Prentice, I.C.: Integrating peatlands and permafrost into a dynamic
 global vegetation model: 1. Evaluation and sensitivity of physical land surface
 processes, Global Biogeochem. Cycles 23, GB3014, doi:10.1029/2008GB003412,
 2009.
- 1176 Wania, R., Melton, J. R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T.,
- 1177 Avis, C. A., Chen ,G., Eliseev, A. V., Hopcroft, P. O., Riley, W. J., Subin, Z. M., Tian,
- 1178 H., van Bodegom, P.M., Kleinen, T., Yu, Z., Singarayer, J. S., Zurcher, S.,
- 1179 Lettenmaier, D. P., Beerling, D. J., Denisov, S. N., Prigent, C., Papa, F., and Kaplan, J.
- 1180 O.: Present state of global wetland extent and wetland methane modelling:
- 1181 methodology of a model inter-comparison project (WETCHIMP), Geosci. Model
- 1182 Dev., 6, 617-641, 2013.
- Walker, M.D., Wahren, C.H., Hollister, R.D., Henry, G.H.R., Ahlquist, L.E., Alatalo,
 J.M., Bret-Harte, M.S., Calef, M.P., Callaghan, T.V., Carroll, A.B., Epstein, H.E.,
 Jonsdottir, I.S., Klein, J.A., Magnusson, B., Molau, U., Oberbauer, S.F., Rewa, S.P.,
 Robinson, C.H., Shaver, G.R., Suding, K.N., Thompson, C.C., Tolvanen, A., Totland,
 O., Turner, P.L., Tweedie, C.E., Webber, and P.J., Wookey, P.A.: Plant community
 responses to experimental warming across the tundra biome, Proc Natl Acad Sci USA,
 10,31342-6, 2006.
- Walker, T. N., Ward, S. E., Ostle, N. J., and Bardgett, R. D.: Contrasting growth
 responses of dominant peatland plants to warming and vegetation composition,
 Oecologia, 178, 141-151, https://doi. org/10.1007/s00442-015-3254-1, 2015.
- Walker, A. P., Carter, K. R., Gu, L., Hanson, P. J., Malhotra, A., Norby, R.J., Sebestyen,
 S. D., Wullschleger, S. D., Weston, D. J.: 2017. Biophysical drivers of seasonal
 variability in Sphagnum gross primary production in a northern temperate bog, J.
 Geophys. Res.-Biogeo, 122, 1078-1097, https://doi.org/10.1002/2016JG003711, 2017.

1197 1198	Wang, H., Richardson, C. J., and Ho, M.: Dual controls on carbon loss during drought in peatlands, Nature Climate Change, 5, 58- 587, 2015.
1199 1200 1201	Ward, S. E., Ostle, N. J., Oakley, S., Quirk, H., Henrys, P. A., and Bardgett, R. D.: Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition, Ecol. Lett., 16, 1285-1293, 2013.
1202 1203 1204 1205 1206	Weston, D.J., Timm, C.M., Walker, A.P., Gu, L., Muchero, W., Schmuta, J., Shaw, A. J., Tuskan, G. A., Warren, J.M., and Wllschleger, S.D.: Sphagnum physiology in the context of changing climate: Emergent influences of genomics, modeling and host- microbiome interactions on understanding ecosystem function, Plant, Cell and Environment, 38, 1737-1751, doi: 10.1111/pce.12458, 2015.
1207 1208 1209	White, M. A., Thornton, P. E., Running, S. W., and Nemani, R. R.: Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls, Earth Interactions, 4(3), 1-85, 2000.
1210 1211 1212	Wieder R. K.: Primary production in boreal peatlands. In: Boreal peatland ecosystems, edited by: Wieder, R. K., and Vitt, D. H., Springer-Verlag, Berlin Heidelberg, Germany, 145-163, 2006.
1213 1214 1215 1216 1217	Wiley, E., Rogers, B. J., Griesbauer, H. P., and Landhausser, S. M.: Spruce shows greater sensitivity to recent warming than Douglas-fir in central British Columbia, Ecosphere 9(5), e02221, 10.1002/ecs2.2221, 2018Williams T.G. and Flanagan, L.B.: Measuring and modelling environmental influences on photosynthetic gas exchange in Sphagnum and Pleurozium, Plant Cell and Environment, 21, 555-564, 1998.
1218 1219 1220	Wilmking, M., Juday, G. P., Barber, V. A., and Zald, H. S. J.: Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds, Glob. Change Biol. 10,1724-1736, 2004.
1221 1222 1223	Wolf, A., Callaghan, T. V., and Larson, K.: Future changes in vegetation and ecosystem function of the Barents Region, Climatic Change, 87, 51-73, https://doi.org/10.1007/s10584-007-9342-4, 2008.
1224 1225 1226	Wolken, J. M., Mann, D. H., Grant, T. A., Lloyd, A. H., Rupp, T.S., and Hollingsworth, T. N.: 2016. Climate-growth relationships along a black spruce topose-quence in interior Alaska, Arctic, Antarctic, and Alpine Research, 48,637-652, 2016.
1227 1228 1229 1230 1231	Wu, J., Roulet, N. T., Sagerfors, J., Nilsson, M. B.: Simulation of six years of carbon fluxes for a sedge-dominated oligotrophic minerogenic peatland in Northern Sweden using the McGill Wetland Model (MWM), J. Geophys. ResBiogeosciences, dio:10.1002/jgrg.20045, 2013.
1232 1233 1234	Wu, Y. and Blodau, C.: PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands, Geosci. Model Dev., 6, 1173- 1207, doi:10.5194/gmd-6-1173-2013, 2013.

1235	Wu, J. and Roulet, N. T.: Climate change reduces the capacity of northern peatlands to
1236	absorb the atmospheric carbon dioxide: The different responses of bogs and fens,
1237	Global Biogeochem. Cycles, doi.org/10.1002/2014GB004845, 2014.
1238	Wu, Y., Verseghy, D. L., and Melton, J. R.: Integrating peatlands into the coupled
1239	Canadian Land Surface Scheme (CLASS) v3.6 and the Canadian Terrestrial
1240	Ecosystem Model (CTEM) v2.0, Geosci. Model Dev., 9, 2639-2663,
1241	doi:10.5194/gmd-9-2639-2016, 2016.
1242	Yang, X., Ricciuto, D. M., Thornton, P. E., Shi, X., Xu, M., Hoffman, F., Norby R. J.:
1243	The effects of phosphorus cycle dynamics on carbon sources and sinks in the Amazon
1244	region: a modeling study using ELM v1, J. Geophys. ResBiogeo, 124,
1245	https://doi.org/10.1029/2019JG005082, 2019.
1246	Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S.J.: Global peatland
1247	dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37, L13402,
1248	doi:10.1029/2010GL043584, 2010.
1249	Yurova, A., Wolf, A., Sagerfors, J., and Nilsson, M.: Variations in net ecosystem
1250	exchange of carbon dioxide in a boreal mire: Modeling mechanisms linked to water
1251	table position, J. Geophys. ResBiogeo., 112, G02025, doi:10.1029/2006JG000342,
1252	2007
1253 1254 1255 1256	Zhang, W. X., Miller, P. A., Smith, B., Wania, R., Koenigk, T., and Doscher, R.: Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual- based dynamic vegetation model, Environ. Res. Lett., 8, 034023, https://doi.org/10.1088/1748-9326/8/3/034023, 2013.
1257 1258 1259	Zhuang, Q., Melillo, J.M., Sarofim, M.C., Kicklighter, D.W., McGuire, A.D., Felzer, B.S., Sokolov, A., Prinn, R.G., Steudler, P.A., and Hu, S.: CO ₂ and CH ₄ exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st

- 1260 century, Geophys. Res. Lett., 33, L17403, dio:10.1029/2006GL026972, 2006.
- 1261